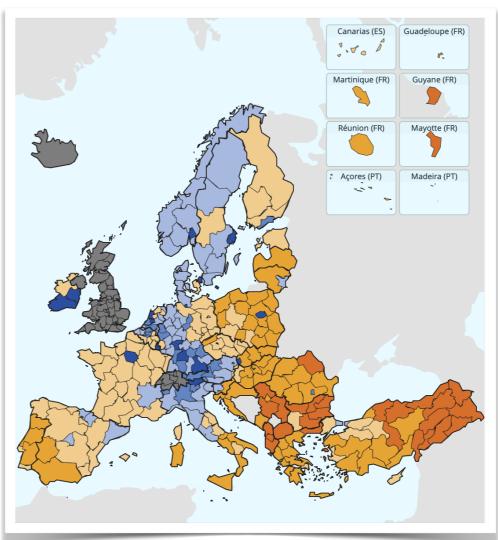


Vienna, 14.04.2021

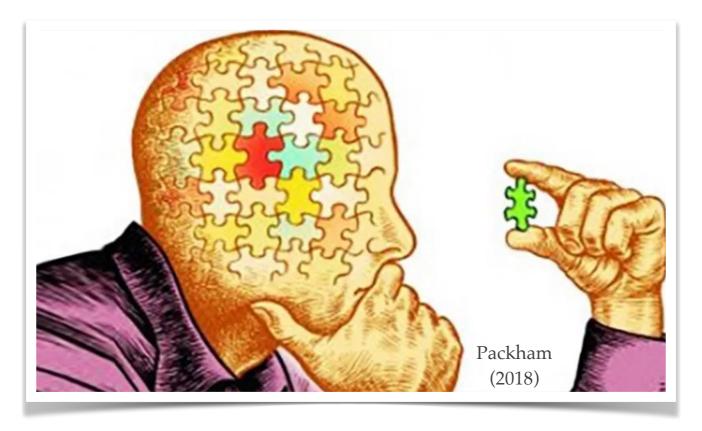
The relationship of skillcomplexity, diversity, and relatedness with regional growth

<u>Tom Broekel</u> Silje Haus-Reve (UiS) Rune Dahl Fitjar (UiS)


www.tombroekel.de

Motivation

- Places shape innovation & growth (Glaeser et al. 1992, Boschma & Iammarino 2009, Capello & Lenzi 2016, Eriksson et al. 2017)
- See Explosion of (additional) empirical research in recent years
- Solution Focus on specific factors (Frenken et al. 2007, Balland et al. 2019, Mewes & Broekel 2020)
 - Specialisation
 - **Diversity**
 - Relatedness
 - Complexity


...

Motivation

Literature (still) with a number of shortcomings

- Dimensions evaluated separately > relative importance?
- Attention on diversification -> what about economic growth?
- Few insights into context-sensitivity of dimensions' effects

Outline

Motivation

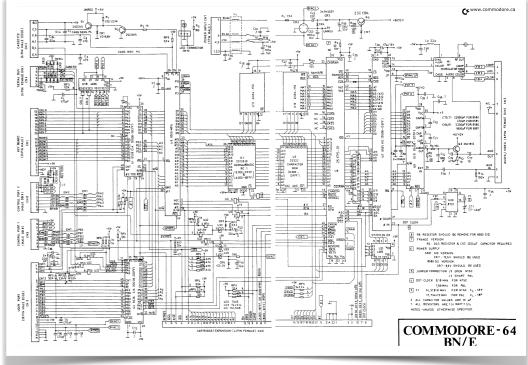
Stress
When the orgen equation of the orgen equation of

- Selatedness, complexity, diversity
- Empirical study
 - Data, estimations, results
- Conclusion

Theory: Relatedness

Strong overlap & similarity in context, terminology, scientific principles

Selonging to same (superior) technology or emergent from same basic technology


Technological relatedness

Relatedness helps diversification & expansion -> growth

Massive empirical evidence, see, e.g. Hidalgo et al. (2018)

Theory: Complexity

- Sum Engaging in complex activities difficult and requires non-tradable (spatial) capabilities (Hidalgo & Hausmann 2009)
- Complexity (and rareness thereof) -> Economic value
 - Exclusiveness & lower competitive pressure
 - Access to (even) more complex activities
 - Competitive advantage
 - Sear to monopolistic rents

Theory: Complexity

Empirical evidence for complexity's relevance

- Factor in diversification at national level (Hidalgo & Hausman 2009)
- Spatially rare & little diffusion of complex knowledge (Hidalgo & Hausman 2009, Balland & Rigby 2017)
- Requires more efforts & collaboration (Broekel 2019)
- Correlates with economic wealth, higher income equality, and regional growth (Hidalgo & Hausman 2009, Hartmann et al. 2017, Mewes & Broekel 2019)

...

Theory: Diversity

- Relatedness fuels path-dependent developments
- Danger of narrowing knowledge bases -> lock-ins (Grillitsch et al. 2018)
- Presence and sustaining of (unrelated) diversity
 - Crucial for absorbing (external) shocks (Frenken et al. 2007)
 - Basis for radical and valuable innovation (Nooteboom 2000)
- Diversity essential ingredient for (long-term) development

Motivation: Shortcomings

Dimensions evaluated **separately**

- Much evidence for diversification of industrial portfolio ≠ growth
 growth
- Few studies on other than employment dimensions of growth
- Little insights into context/place sensitivity
- Occupational perspective less utilised in comparison to industrial

Outline

Motivation

O Theory

Relatedness, complexity, diversity

Empirical study

Data, estimations, results

Conclusion

Empirical study: Data

Individual-level register-data linked to establishments for Norway

- Information on workplace, industry, work location of employees in private sector 2009 - 2016
 - Sumbers of workers in occupation *i* and industry *j* in region *r* and moves in between
 - Regions: NUTS 4 combined to 78 labor markets (Gundersen & Juvkam 2013)
 - Industries: 4-digit NACE level
 - Occupations: 4-digit ISCO level

Empirical study: Relatedness

Revealed skill relatedness (Neffke & Henning 2013, Fitjar & Timmermans 2017)

Industrial relatedness

Job changes between two industries larger than statistical expectation

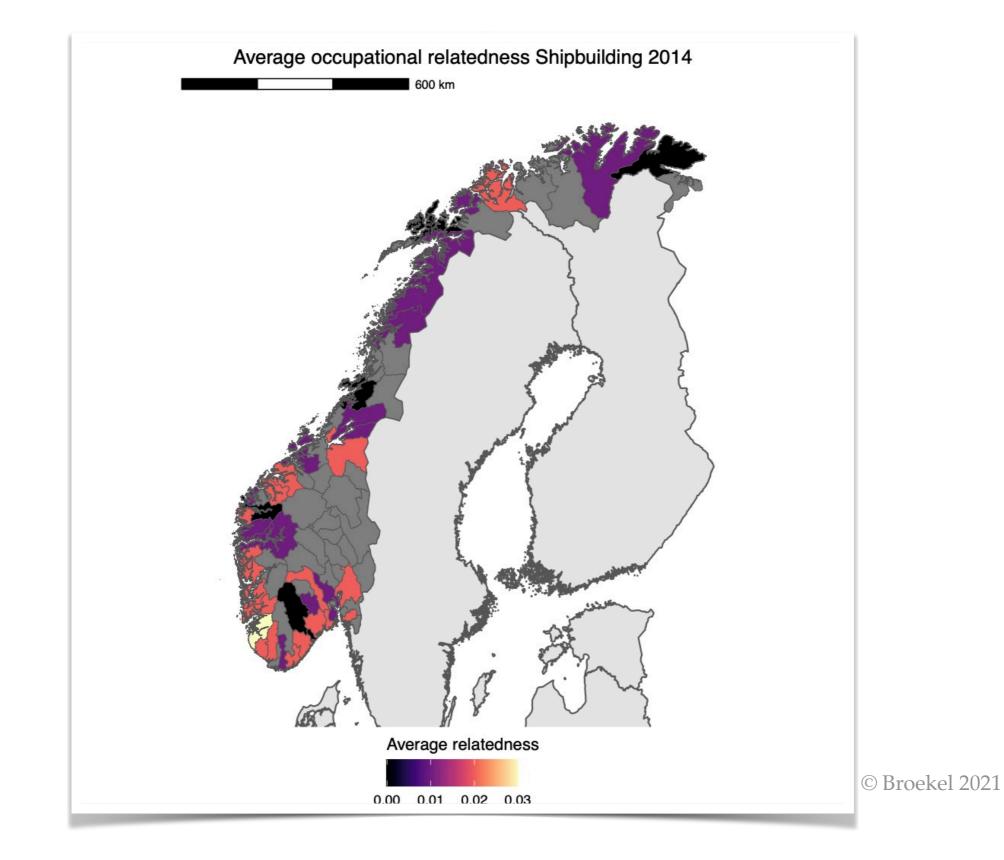
Occupational relatedness

Job changes between two occupations larger than statistical expectation

Empirical study: Relatedness

Industrial relatedness density

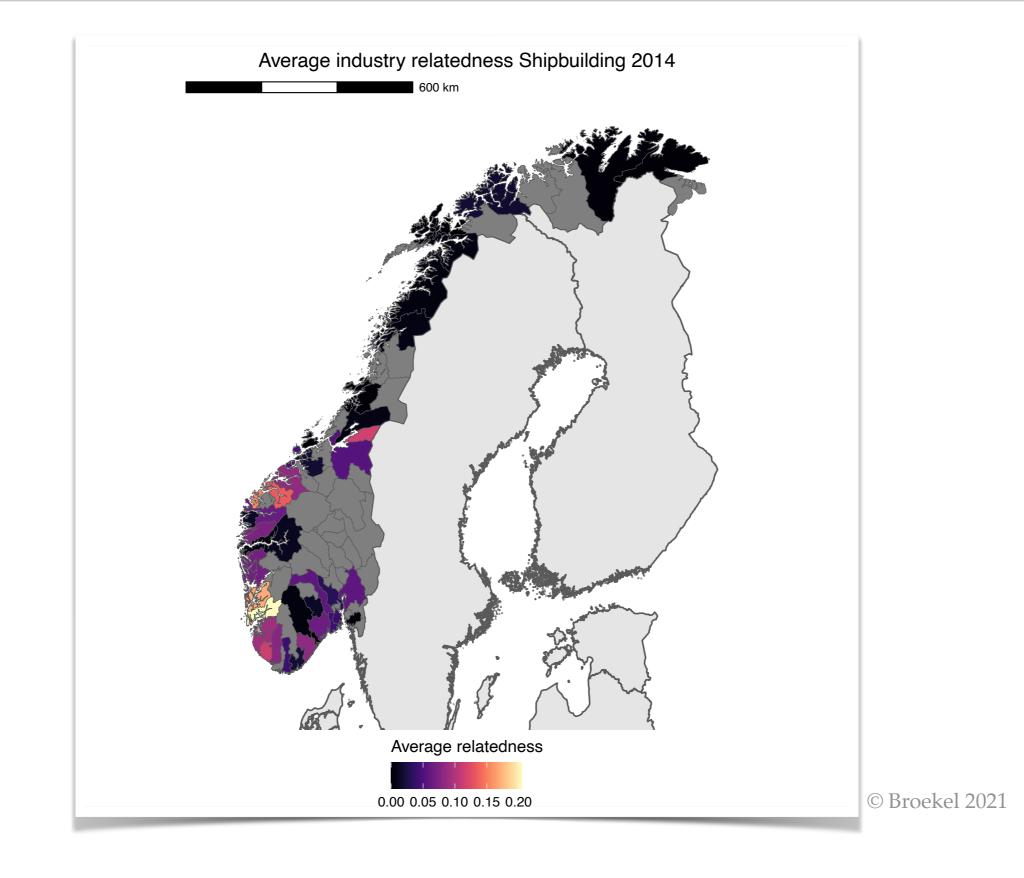
Relatedness of industry *i* to all other industries in region *r* weighted by (regional) employment shares of industries


Occupational relatedness density

- Selatedness of occupation i to all other occupations in region r weighted by (regional) employment shares of occupations weighted with occupation
- \bigcirc Weighted by occupation *i*'s share in industry *j* in region *r*
- \bigcirc Summed of all occupations in industry *j* in region *r*

Empirical study: Occupational relatedness

	NACE	Industry	Occupational relatedness
1	47.21	Retail sale of fruit and vegetables	0.046
2	47.26	Retail sale of tobacco products	0.038
3	06.10	Extraction of crude petroleum	0.037
4	47.63	Retail sale of music and video recordings	0.034
5	66.11	Administration of financial markets	0.033
6	10.12	Processing and preservation of poultry and meat	0.032
7	03.21	Marine aquaculture	0.031
8	62.02	Computer consultancy activities	0.030
9	10.82	Manufacturing of cocoa, chocolate etc.	0.030
10	62.03	Computer facilities management activities	0.030


Empirical study: Occupational relatedness

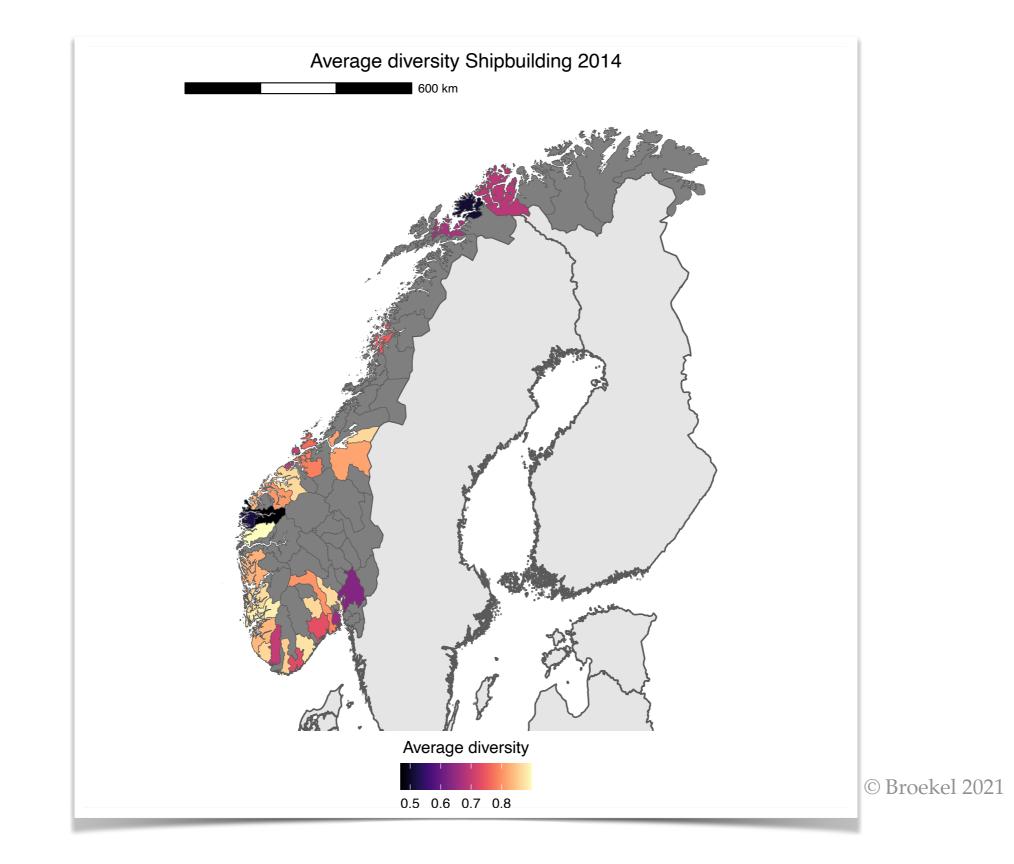
Empirical study: Industrial relatedness

	NACE	Industry	Industry relatedness
L	09.10	Supply for petroleum/natural gas extraction	0.317
2	28.92	Manufacturing of machinery for mining/quarrying/construction	0.242
3	07.10	Mining of iron ores	0.220
1	25.40	Manufacturing of weapons and ammunition	0.110
5	30.11	Building ships and floating structures	0.105
6	71.12	Engineering activities/related technical consultancy	0.095
7	47.11	Non-specialist stores with food, beverages, etc.	0.094
8	69.20	Accounting/bookkeeping/tax consultancy	0.090
9	16.21	Manufacturing of veneer sheets, wood-based materials	0.083
10	10.20	Processing and preservation of fish, etc.	0.081

Empirical study: Industrial relatedness

Empirical study: Occupational diversity

Fractionalisation measure (Alesina et al. 2003)


 $DIVERSE_{irt} = 1 - \sum_{o=1}^{O} s_{oirt}^2$

With s as proportion of employees in industry i in region r in occupation o and O being the numbers of different occupations in one industryregion

Empirical study: Occupational diversity

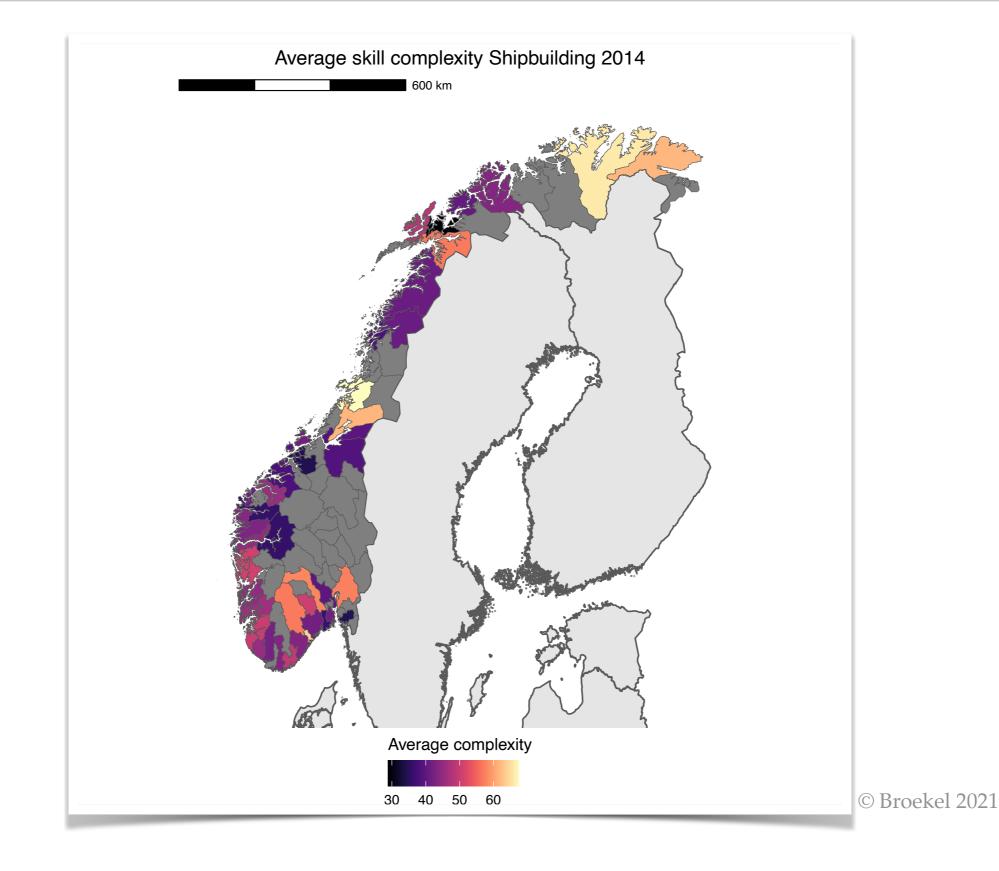
	NACE	Industry	Diversity
1	28.91	Manufacturing of machinery for metallurgy	0.928
2	07.29	Mining of other non-ferrous metal ores	0.906
3	28.95	Manufacturing of machinery for paper/paperboard production	0.901
4	64.20	Activities of holding companies	0.899
5	20.30	Manufacturing of paints, varnishes and coatings	0.895
6	26.60	Manufacturing of electromedical/electrotherapeutical equipment	0.884
7	21.10	Manufacturing of basic pharmaceutical products	0.880
8	23.51	Manufacturing of cement	0.868
9	08.91	Mining of chemical/fertiliser minerals	0.866
10	28.15	Manufacturing of bearings, gears, gearing/driving elements	0.858

Empirical study: Occupational diversity

Empirical study: Occupational complexity

Weighted average of industry i's occupations' complexity in region r

- Occupations' complexity (Caines et al. 2017)
 - Complexity of tasks (e.g., processing of information & communicating)
 - Weighted aggregation of 35 variables from US O*NET subsections


 - Complexity values for 424 ISCO occupations aggregated to industry levels via industry-specific regional occupation shares

Empirical study: Occupational complexity

	NACE	Industry	Complexity
1	35.23	Trade of gas through mains	72.282
2	71.11	Architectural activities	69.945
3	06.10	Extraction of crude petroleum	64.370
4	72.11	R&D on biotechnology	63.574
5	72.19	Other R&D on natural sciences etc.	63.237
6	62.02	Computer consultancy activities	61.720
7	62.09	Other information technology/computer services activities	61.622
8	62.01	Computer programming activities	61.146
9	62.03	Computer facilities management activities	61.114
10	71.12	Engineering activities/related technical consultancy	59.757

Table 2: Occupational complexity in Norwegian industries

Empirical study: Occupational complexity

Outline

Motivation

O Theory

Relatedness, complexity, diversity

Empirical study

Data, estimations, results

Conclusion

Empirical study: Estimations

Long-term perspective as core variables with little temporal variance

Dependent: average annual growth in employment and wages for industry-regions between 2009-2014

Explanatory variables in levels of 2009

Diversity, relatedness, complexity

Controls

Population density

Location quotient of industry i in region r

Empirical study: Estimations

OLS growth regression with multiway clustered std. errors

- Four-digit NACE & regions
- Industry fixed effects at two-digit NACE level
- Initial level of wages & employment
- Concentration on industry-regions with at least 5 employees in each year
- Estimation for all regions & subsamples
 - Low, middle, high complex industries
 - Qural, intermediate, urban regions

Outline

Motivation

O Theory

Relatedness, complexity, diversity

Empirical study

Data, estimations, results

Conclusion

Empirical study: Results

	Employment growth			Wage growth				
	Model 1	Model 2	Model 3	Model 4	Model 1	Model 2	Model 3	Model 4
IEMPL	-0.012***	-0.012***	-0.012***	-0.013***	0.003**	0.003**	0.002^{**}	0.002^{*}
	(0.003)	(0.003)	(0.003)	(0.003)	(0.001)	(0.001)	(0.001)	(0.001)
IPOP.DEN	0.007^{***}	0.007^{**}	0.007^{***}	0.006^{**}	-0.000	-0.001	-0.001	-0.001
	(0.002)	(0.002)	(0.002)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)
ILQ	-0.006	-0.006	-0.006	-0.006	0.001	0.000	0.001	0.000
	(0.003)	(0.003)	(0.003)	(0.003)	(0.001)	(0.001)	(0.001)	(0.001)
IND.REL	0.085^{*}	0.085^{*}	0.090^{*}	0.092^{*}	-0.027*	-0.029*	-0.022	-0.022
	(0.042)	(0.042)	(0.041)	(0.042)	(0.014)	(0.014)	(0.013)	(0.013)
DIVERS		-0.002	-0.004	-0.003		0.014^{*}	0.014^{*}	0.014^{*}
		(0.013)	(0.013)	(0.014)		(0.006)	(0.006)	(0.006)
COMPLEX			0.000	0.000			0.000**	0.000**
			(0.000)	(0.000)			(0.000)	(0.000)
OCC.REL				0.280				0.032
				(0.248)				(0.095)
IWAGE					-0.037***	-0.039***	-0.043***	-0.044**
					(0.005)	(0.005)	(0.005)	(0.005)
NACE-2 FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Clustered std. err. NACE-4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Clustered std. err. Region	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Num. obs.	6226	6226	6226	6226	6226	6226	6226	6226
R ² (full model)	0.052	0.052	0.052	0.052	0.065	0.067	0.070	0.070
R ² (proj model)	0.010	0.010	0.011	0.011	0.038	0.040	0.043	0.043
Adj. R ² (full model)	0.041	0.041	0.041	0.041	0.055	0.056	0.059	0.059
Adj. R ² (proj model)	-0.000	-0.001	-0.001	-0.000	0.027	0.029	0.032	0.032
Num. groups: NACE2	65	65	65	65	65	65	65	65

© Broekel 2021

Empirical study: Results

Overall employment growth

Industrial relatedness

Overall wage growth

Diversity

Generative Complexity

Solution Notable heterogeneity when differentiating regions & industries!

Empirical study: Results

Employment growth

- Industrial relatedness in intermediate regions
- Occupational relatedness in urban regions (weakly)
- Diversity in middle complex industries (weakly)

Wage growth

- Complexity in rural & intermediate regions
- Diversity in intermediate regions (weakly) and simple industries
- Occupational relatedness in urban regions

Outline

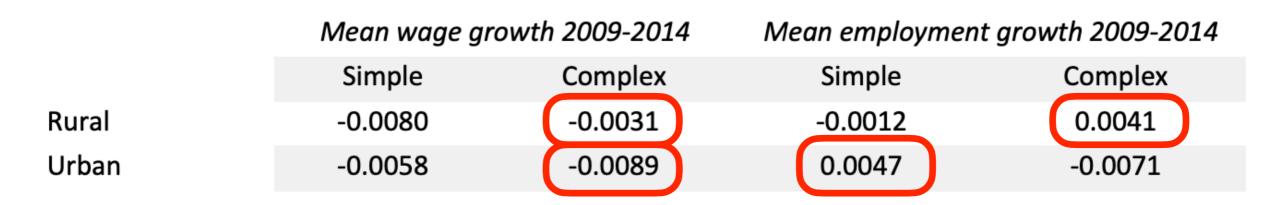
Motivation

O Theory

- Selatedness, complexity, diversity
- Set-up of empirical study
- Results
- Conclusion

Conclusion

Diversity & relatedness & complexity matter for regional growth


- Importance conditional on
 - Stypes of regions
 - Sophistication of industries' knowledge base

...

- Empirical results **country** (Norway) **specific**?
- Occupational & industrial perspective enriches analysis but increases complexity

Conclusion

Sorwegian paradox?

More research!!!!

Thank you for your attention

The relationship of skillcomplexity, diversity, and relatedness with regional growth

<u>Tom Broekel</u> Silje Haus-Reve (UiS) Rune Dahl Fitjar (UiS)

www.tombroekel.de

